
Tetrahedron Letters No. 45, pp 4343 - 4346, 1971. Pergamon Press. Printed in Great Britain.

1,3-DIPOLAR CYCLOADDITIONS OF ALIPHATIC DIAZO COMPOUNDS TO α,β -UNSATURATED CARBOXYLIC ESTERS - SPATIAL AND ELECTRONIC EFFECTS ON THE STERIC COURSE Rolf Huisgen and Peter Eberhard

Institut für Organische Chemie der Universität, München 2, Karlstr.23 (Germany) (Received in UK 6 September 1971; accepted for publication 8 October 1971)

Aliphatic diazo compounds undergo oriented cycloadditions to α,β -unsaturated carboxylic esters such that the diazo carbon atom becomes attached to the β -position of the unsaturated esters; "anomalous" additions have also been observed (1). Information on the steric course of the "normal" addition, i.e. on the nature of the "two-planes" orientation complex of the reactants, can be gained from systems in which the diazo carbon atom and the β -carbon atom of the ester become chiral centers during the cycloaddition. We have treated monosubstituted diazomethanes with olefinic components in which β or c is an ester group and L and S symbolize large and small substituents.

The steric course is defined as <u>syn</u> when substituent q and the large substituent L end up <u>cis</u> in the 4- and 5-positions of the pyrazoline. As pointed out in the preceding communication (1), the interaction of the substituents q and L in the <u>syn</u> complex $\frac{1}{2}$ can be of an attractive nature (π -overlap,

dipole-dipole interaction) or of a repulsive nature (van der Waals strain). The <u>anti</u> cycloaddition takes place <u>via</u> the "two-planes" orientation complex 2 and leads to the pyrazoline in which α and L are <u>trans</u> to each other.

Although C- α also becomes chiral in the cycloaddition, only two stereoisomeric 1-pyrazolines are formed because the relative configuration of C- α and C- β is retained in the concerted 1,3-dipolar cycloaddition (2). If **6** or c is hydrogen, a tautomerisation occurs to a 2-pyrazoline, in which the relative configuration at C-4 and C-5 is unaltered. A complication is encountered if substituent α is also an ester group, but the use of different ester units allows one to sort out the pathways as reported (1).

The stereoisomeric 1- or 2-pyrazolines were separated by thick-layer chromatography or fractional crystallization. Their properties and their structural determination by n.m.r. spectra will be published elsewhere. The rate ratios k(syn) / k(anti) shown in the table were obtained by n.m.r. analysis directly on the mixture of cycloadducts.

Table. Pyrazoline Formation from Aliphatic Diazo Compounds and α , β -Olefinic Esters. Ratios of Syn and Anti 1,3-Dipolar Cycloaddition.

No.	Diazoalkan	α , β -Unsaturated Ester			k(syn)		
	a	L	S	6	c	k(anti)	
ı	СН3	со ₂ сн ₃	н	CO2CH3	CH3	0.23	
2	сна	CO2 CH3	н	СНЗ	CO2CH3	0.28	
3	СН	CO2CH3	CH3	CO2CH3	CII3	0.11	
4	CH3	CO2CH3	СНЗ	СНЗ	со2сн3	0.72	
5	C6H5	сосна	н	co_cu_	СНЗ	0.32	
6	C ₆ H ₅	согснз	н	сна	co2cii3	0.85	
7	pC1-C6H4	CO2CH3	н	CO2CH3	CII3	0.39	
8	CO2CH3	C6H5	н	н	CO2C2H5	1.5	
9	CO2CH3	C ₆ H ₅	н	н	со2с(сн3)	2.6	
10	согсна	C ₆ H ₅	н	со2сн3	н	0.64	
11	co2c(CH3)		н	н	со ₂ сн ₃	0.47	

The following conclusions can be drawn from the values: 1. In the addition of diazoethane $(a = CH_3)$ to citraconic and mesaconic esters (no. 1,2) the <u>syn</u> addition is ca. 4 times slower than <u>anti</u> addition. This preference reflects the van der Waals strain between $\mathbf{a} = CH_3$ and $L = CO_2CH_3$ in the <u>syn</u> complex <u>1</u> and in its corresponding transition state.

<u>2</u>. Phenyldiazomethane + mesaconic ester (no. 6) shows k(syn) / k(anti) = 0.85. Though substituent a (C_6H_5) is larger than CH_3 , the rate ratio increases because the π -overlap between C_6H_5 and CO_2CH_3 overcompensates for the increase of van der Waals strain. In the corresponding interaction of $a = CO_2CH_3$ and $L = C_6H_5$ (no. 8, 1.5) k(syn) becomes even larger than k(anti). However, on further increase in the van der Waals strain as illustrated in no. 11 with $a = CO_2C(CH_3)_3$ and $L = C_6H_5$, the ratio k(syn) / k(anti) drops to 0.47.

3. Dimethyl citraconate, with its <u>cis</u> ester groups, is no longer planar. The attractive π -overlap between $\mathbf{a} = C_0^{H_5}$ and $\mathbf{L} = \text{twisted } CO_2^{CH_3}$ (no. 5, 0.32) is smaller than in the case of dimethyl mesaconate (no. 6, 0.85). The same phenomenon is illustrated in the additions of methyl diazoacetate to <u>cis</u>- and <u>trans</u>-cinnamic ester (no. 10, 0.64 <u>vs</u>. no. 8, 1.5).

<u>4</u>. The ester groups of 2,3-dimethylmaleic ester are even more tilted than those of methylmaleic ester (citraconic ester). For $\alpha = CH_3 k(syn) / k(anti) = 0.11$ (no. 3) compared with 0.23 (no. 1).

5. The van der Waals repulsion of bulky <u>cis</u> substituents in 3- and 5-position of the 1-pyrazoline (**a** and **b** in the <u>syn</u>, **a** and **c** in the <u>anti</u> addition) seems to influence the transition state energy also. For example, k(syn) / k(anti)= 1.5 for methyl diazoacctate + ethyl <u>trans</u>-cinnamate (no. 8) is increased to 2.6 when tert.-butyl <u>trans</u>-cinnamate (no. 9) is the dipolarophile. A decrease in k(anti) due to the interactions between 3- and 5-substituents may be responsible. The relatively high ratio of 0.72 in the system diazoethane + 2,3dimethylfumaric ester (no. 4) can also be interpreted in terms of a repression of k(anti).

Thus, the ratio of the two steric courses, <u>syn</u> and <u>anti</u>, functions as a probe and gives insight into the interplay of steric and electronic substituent effects in the transition state of 1,3-dipolar cycloaddition. The effect of π -overlap and van der Waals strain was also disclosed in the addition of nitrones to styrene (3). Studies of the Diels-Alder reaction (4-6) brought to light similar phenomena that led to the <u>endo</u> rule and to the preference for <u>cis</u> disubstitution.

REFERENCES

- (1) P. Eberhard and R. Huisgen, <u>Tetrahedron letters</u>, preceding.
- (2) R. Huisgen, Angew.Chem.Internat.Edit., 2, 633 (1963).
- (3) R. Huisgen, R. Grashey, H. Hauck and H. Seidl, <u>Chem.Ber.</u>, <u>101</u>, 2548 (1968).
- (4) J.G. Martin and R.K. Hill, Chem. Reviews, 537 (1961).
- (5) Y.A. Titov, <u>Russ.chem.Rev.</u>, <u>Engl.Transl.</u>, 267 (1962).
- (6) J. Sauer, <u>Angew.Chem.</u>, <u>79</u>, 76 (1967).